Abstract

The genetic structure of organisms results from the interactions between life history traits and the ecological and demographic characteristics of the landscape that shape the intra- and interpopulation genetic variation in space and time. In this study, we used a species restricted to islands of grassland vegetation in southern Brazil to investigate the effects of its naturally fragmented distribution on diversity and genetic structure patterns. Diversity and intra- and interpopulational genetic structure were analyzed using polymorphisms of eight nuclear microsatellite markers in 205 individuals of T. hatschbachii and Bayesian and multivariate methods. At the intrapopulation level, populations presented low genetic diversity and strong spatial genetic structure, indicating a greater spatial autocorrelation until ∼50-500 m. At the interpopulation level, genetic variation partitioned into two geographically structured genetic clusters. Gene flow through pollen was more efficient than gene flow by seeds. Genetic structure was influenced locally by seed and pollen dispersal dynamics and regionally by fragmentation of the grassland landscape. This study highlights the importance of geological barriers, and potentially a role for genetic drift, in influencing diversification of species in subtropical grasslands of southern Brazil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call