Abstract
Advances in machine learning coupled with the abundances of training data has facilitated the deep learning era, which has demonstrated its ability and effectiveness in solving complex detection and recognition problems. In general application areas with elements of machine learning have seen exponential growth with promising new and sophisticated solutions to complex learning problems. In computer vision, the challenge related to the detection of known objects in a scene is a thing of the past. With the tremendous increase in detection accuracies, some close to that of human detection, there are several areas still lagging in computer vision and machine learning where improvements may call for more architectural designs. In this paper, we propose a physiologically inspired model for scene understanding that encodes three key components: object location, size and category. Our aim is to develop an energy efficient artificial intelligent model for naturalistic scene understanding capable of deploying on a low power neuromorphic hardware. We have reviewed recent advances in deep learning architecture that have taken inspiration from human or primate learning systems and provided direct to future advancement on deep learning with inspiration from physiological experiments. Upon a review of areas that have benefitted from deep learning, we provide recommendations for enhancing those areas that might have stalled or grinded to a halt with little or no significant improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.