Abstract

This paper evaluates the performance of using Markov chain of different orders to synthesise real-world representative drive cycles from numerous naturalistic drive cycles. The representative drive cycles can be a valuable input into the design of powertrains, especially for plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV). Their onboard cost-sensitive electric components, such as battery, require an appropriate sizing by understanding how people drive in naturalistic settings. Applying representative drive cycles instead of federal certification drive cycles provides flexibility of drive cycle length and ensures realistic cycle aggressiveness. Even though Markov chain has been widely used to synthesise representative drive cycles, the effects of different orders have not been systematically compared. Based on a publicly accessible portion of GPS-enhanced regional household travel survey, after statistical hypothesis tests, the results show that higher degree of representativeness can be achieved with a 3-order Markov chain compared to a 2-order Markov chain. These findings help to improve the accuracy of cycle synthesis for PHEV and EV analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.