Abstract

Modern research has evolved several approaches toward skin regeneration and one of the novel concerns is the use of polymer-based systems due to their excellent beneficial properties to the skin. Several polymers, such as cellulose, hyaluronan, alginate, chitosan, collagen, fibrin and fibroin, have been tested and have proven the benefits for skin regeneration, and most of them are derived from either polysaccharide- or protein-based materials. In order to understand the mode of action, several researchers investigated the cell–matrix interaction and possible signaling mechanism in skin regeneration. Not only the signaling mechanism but also the mode of cell communication determines the application of polysaccharide- and protein-based polymers in practice. Based on the above significance, this review disclosed the recent findings to compile a possible method of communication between cells and polymers derived from polysaccharide-based (such as cellulose, hyaluronan, chitosan, alginate, agar, and xanthan gum) and protein-based (such as collagen, gelatin, fibrin, and silk fibroin) materials along with other polymers, such as poly(vinyl alcohol), polyglycolide or poly(glycolic acid), or poly(lactic acid) in skin regeneration. Accordingly, this review addresses the fundamental concept of cell–matrix communication, which helps us to understand the basis of the polymer’s functions in the biomedical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.