Abstract

Maize (Zea mays L.) silk contains high levels of flavonoids and is widely used to promote human health. Isoorientin, a natural C-glycoside flavone abundant in maize silk, has attracted considerable attention due to its potential value. Although different classes of flavonoid have been well characterized in plants, the genes involved in the biosynthesis of isoorientin in maize are largely unknown. Here, we used targeted metabolic profiling of isoorientin on the silks in an association panel consisting of 294 maize inbred lines. We identified the gene ZmCGT1 by genome-wide association analysis. The ZmCGT1 protein was characterized as a 2-hydroxyflavanone C-glycosyltransferase that can C-glycosylate 2-hydroxyflavanone to form flavone-C-glycoside after dehydration. Moreover, ZmCGT1 overexpression increased isoorientin levels and RNA interference-mediated ZmCGT1 knockdown decreased accumulation of isoorientin in maize silk. Further, two nucleotide polymorphisms, A502C and A1022G, which led to amino acid changes I168L and E341G, respectively, were identified to be functional polymorphisms responsible for the natural variation in isoorientin levels. In summary, we identified the gene ZmCGT1, which plays an important role in isoorientin biosynthesis, providing insights into the genetic basis of the natural variation in isoorientin levels in maize silk. The identified favorable CG allele of ZmCGT1 may be further used for genetic improvement of nutritional quality in maize.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call