Abstract

Lignocellulose content is an important factor affecting the conversion efficiency of biomass energy plants. In this study, 179 Miscanthus accessions in China were used to determine the content of lignocellulose components in stems via acid hydrolysis and high-performance liquid chromatography. Results showed that the average lignocellulose content of wild Miscanthus germplasm resources was 80.27 ± 6.51%, and the average content of cellulose, hemicellulose, lignin, extracts, and total ash was 38.38 ± 3.52, 24.23 ± 4.21, 17.66 ± 1.56, 14.50 ± 5.60, and 2.53 ± 0.59%, respectively. The average lignocellulose content of M. sinensis, M. floridulus, M. nudipes, M. sacchariflorus, M. lutarioriparius, and the hybrids was 77.94 ± 6.06, 75.16 ± 4.98, 75.68 ± 3.02, 83.71 ± 4.78, 81.50 ± 5.23, and 74.72 ± 7.13%, respectively. In all the tested materials, the highest cellulose content was 48.52%, and the lowest was 29.79%. Hemicellulose had the maximum content of 34.23% and a minimum content of 15.71%. The highest lignin content was 23.75%, and the lowest was 13.01%. The lignocellulosic components of different ploidy materials were compared. The content of lignocellulosic components of diploid M. sacchariflorus was higher than that of tetraploid M. sacchariflorus, and the content of lignocellulosic components of diploid M. lutarioriparius was lower than that of tetraploid M. lutarioriparius. Analysis of the relationship between the changes in lignocellulosic components and geographical locations of Miscanthus showed that the holocellulose and hemicellulose content was significantly positive correlated with the latitude of the original growth location. Results indicated that the lignocellulosic components of Miscanthus resources in China are rich in genetic diversity.

Highlights

  • Miscanthus is a tall perennial herbaceous plant

  • We found that diploid M. sacchariflorus had higher lignocellulose content than tetraploid M. sacchariflorus (4X), whereas diploid (2X) M. lutarioriparius had less lignocellulose content than tetraploid (4X) M. lutarioriparius

  • We found that related geographical factors, such as latitude, had an important selection effect on Miscanthus species, and the holocellulose and hemicellulose content increased with latitude

Read more

Summary

Introduction

Miscanthus is a tall perennial herbaceous plant It belongs to the subtribe Saccharinae, tribe Andropogoneae, subfamily Panicoideae, and family Poaceae. It originated in East Asia and Southeast Asia and is widely distributed in China, Japan, and Pacific Islands (Hodkinson et al, 2002; Hastings et al, 2009; Jensen et al, 2011) China is an important origin and distribution center of Miscanthus (Clifton-Brown et al, 2001; Clifton et al, 2015; Li et al, 2019), with extensive wild germplasm resources and abundant genetic diversity (Hodkinson et al, 2002; Anzoua et al, 2011; Ge et al, 2019). M. sacchariflorus and M. lutarioriparius have both diploid and tetraploid resources (Ge et al, 2017), and natural hybrids exist in nature (Lewandowski et al, 2003; Cichorz et al, 2015)

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.