Abstract

The branch number is a crucial factor that influences density tolerance and is closely associated with the yield of soybean. However, its molecular regulation mechanisms remain poorly understood. This study cloned a candidate gene GmSPL9d for regulating the soybean branch number based on the rice OsSPL14 homologous gene. Meanwhile, the genetic diversity of the GmSPL9d was analyzed using 3599 resequencing data and identified 55 SNP/InDel variations, which were categorized into seven haplotypes. Evolutionary analysis classified these haplotypes into two groups: GmSPL9d H-I and GmSPL9d H-II. Soybean varieties carrying the GmSPL9d H-II haplotype exhibited a significantly lower branch number compared with those carrying the GmSPL9d H-I haplotype. Association analysis between the variation sites and branch number phenotypes revealed a significant correlation between the promoter variations and the branch number. Promoter activity assays demonstrated that the GmSPL9d H-II promoter displayed significantly higher activity than the GmSPL9d H-I promoter. Transgenic experiments confirmed that the plants that carried the GmSPL9d H-II promoter exhibited a significantly lower branch number compared with those that carried the GmSPL9d H-I promoter. These findings indicate that the variation in the GmSPL9d promoter affected its transcription level, leading to differences in the soybean branch number. This study provides valuable molecular targets for improving the soybean plant structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call