Abstract

Variation in atmospheric carbon dioxide (CO2) concentration can dictate plant growth and development and shape plant evolution. For paired populations of 31 Arabidopsis accessions, respectively, grown under 100 or 380 ppm CO2, we compared phenotypic traits related to vegetative growth and flowering time. Four accessions showed the least variation in measured growth traits between 100 ppm CO2 and 380 ppm CO2 conditions, though all accessions exhibited a dwarf stature with reduced biomass under low CO2. Our comparison of accessions also incorporated the altitude (indicated in meters) above sea level at which they were originally collected. Notably, An-1 (50 m), Est (50 m), Ws-0 (150 m), and Ler-0 (600 m) showed the least differences (lower decrease or increase) between treatments in flowering time, rosette leaf number, specific leaf weight, stomatal density, and less negative δ13C values. When variations for all traits and seedset were considered together, Ws-0 exhibited the least change between treatments. Our results showed that physiological and phenotypic responses to low CO2 varied among these accessions and did not correlate linearly with altitude, thus suggesting that slower growth or smaller stature under ambient CO2 may potentially belie a fitness advantage for sustainable growth under low CO2 availability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.