Abstract
Viral load and CD4 T-cell counts in patients infected with the human immunodeficiency virus (HIV) are commonly used to guide clinical decisions regarding drug therapy or to assess therapeutic outcomes in clinical trials. However, random fluctuations in these markers of infection can obscure clinically significant change. We employ a Monte Carlo simulation to investigate contributing factors in the expected variability in CD4 T-cell count and viral load due solely to the stochastic nature of HIV infection. The simulation includes processes that contribute to the variability in HIV infection including CD4 and CD8 T-cell population dynamics as well as T-cell activation and proliferation. The simulation results may reconcile the wide range of variabilities in viral load observed in clinical studies, by quantifying correlations between viral load measurements taken days or weeks apart. The sensitivity of variability in T-cell count and viral load to changes in the lifetimes of CD4 and CD8 T-cells is investigated, as well as the effects of drug therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.