Abstract

Nutrients on produce surfaces are vital for successful enteric pathogen colonisation. In this study, we investigated natural variation in metabolite profiles of Romaine ‘Parris Island Cos’ and red oak-leaf lettuce ‘Mascara’ under regular and restricted watering conditions. We also investigated the impact of plant drought stress on the Salmonella – lettuce association. Salmonella Newport and Typhimurium were able to persist at higher levels on regularly watered Romaine than red oak-leaf lettuce. Drought treatment to lettuce impaired epiphytic Salmonella association, with S. Newport and Typhimurium being differentially affected. A higher log reduction of both serotypes was measured on drought-subjected red oak-leaf lettuce plants than controls, but S. Typhimurium was unaffected on water deficit-treated Romaine lettuce (p < 0.05). To assess Salmonella interaction with leaf surface metabolites, leaf washes collected from both cultivars were inoculated and found to be able to support S. Newport growth, with higher levels of Salmonella retrieved from Romaine washes (p < 0.05). The lag phase of S. Newport in washes from water restricted red oak-leaf lettuce was prolonged in relation to regularly-watered controls (p < 0.05). Untargeted plant metabolite profiling using electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) revealed natural variation between Romaine and red oak-leaf lettuce profiles for leaf tissue and leaf washes. Metabolite profile shifts were detected in both lettuce types in response to drought stress, but more unique peaks were detected in red oak-leaf than Romaine lettuce after drought treatment. Variation between the two cultivars was in part attributed to naturally higher levels of flavonoids and anthocyanins in red oak-leaf lettuce compared to Romaine. Moreover, red oak-leaf, but not Romaine lettuce, responded to drought by inducing the accumulation of proline, phenolics, flavonoids and anthocyanins. Drought stress, therefore, enhanced the functional food properties of red oak-leaf lettuce. Salmonella growth dynamics in lettuce leaf washes suggested that natural variation and drought-induced changes in metabolite profiles in lettuce could partly explain the differential susceptibility of various lettuce types to Salmonella, although the primary or secondary metabolites mediating this effect remain unknown. Regulated mild water stress should be investigated as an approach to lower Salmonella contamination risk in suitable lettuce cultivars, while simultaneously boosting the health beneficial quality of lettuce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.