Abstract

Mutator strains with defective methyl-mismatch repair (MMR) systems have been shown to play an important role in adaptation of bacterial populations to changing and stressful environments. In this report, we describe the impact of mutS::aacC3-IV inactivation on foreign DNA acquisition by natural transformation in the phytopathogenic bacterium Ralstonia solanacearum. A mutS mutant of R. solanacearum exhibited 33- to 60-fold greater spontaneous mutation frequencies, in accordance with a mutator phenotype. Transformation experiments indicated that intra- and interspecific DNA transfers increased up to 89-fold. To assess horizontal gene transfer (HGT) from genetically modified plants to R. solanacearum, fitness of the mutator was first evaluated in soil and plant environments. Competitiveness was not modified after 61 days in soil and 8 days in tomato, and the progress of plant decay symptoms was similar to that of the wild-type strain. Despite its survival in soil and in planta, and the powerful capacities of HGT, R. solanacearum was not genetically transformed by transgenic plant DNA in a wide range of in vitro and in planta tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call