Abstract

We present a TeV-scale left-right ultraviolet completion of type-I seesaw for neutrino masses based on the $SU(2)_L\times SU(2)_R\times U(1)_{B-L}$ gauge group without parity, which leads to "large" light-heavy neutrino mixing while keeping the neutrino masses small in a natural manner guaranteed by discrete symmetries. We point out specific observable implications of this class of models if the $SU(2)_R$-breaking scale is of order 5 TeV, in searches for lepton flavor violating processes such as $\mu\to e\gamma$, $\mu\to 3 e$ and $\mu-e$ conversion in nuclei, and lepton number violating processes such as neutrinoless double beta decay as well as at the LHC. In particular, if the upper limit on BR$(\mu\to e\gamma)$ improves by one order of magnitude, a large range of the parameters of the model would be ruled out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call