Abstract

Dengue viruses (DENVs) are emerging, mosquito-borne flaviviruses which cause dengue fever and dengue hemorrhagic fever. The DENV complex consists of 4 serotypes designated DENV1-DENV4. Following natural infection with DENV, individuals develop serotype specific, neutralizing antibody responses. Monoclonal antibodies (MAbs) have been used to map neutralizing epitopes on dengue and other flaviviruses. Most serotype-specific, neutralizing MAbs bind to the lateral ridge of domain III of E protein (EDIII). It has been widely assumed that the EDIII lateral ridge epitope is conserved within each DENV serotype and a good target for vaccines. Using phylogenetic methods, we compared the amino acid sequence of 175 E proteins representing the different genotypes of DENV3 and identified a panel of surface exposed amino acids, including residues in EDIII, that are highly variant across the four DENV3 genotypes. The variable amino acids include six residues at the lateral ridge of EDIII. We used a panel of DENV3 mouse MAbs to assess the functional significance of naturally occurring amino acid variation. From the panel of antibodies, we identified three neutralizing MAbs that bound to EDIII of DENV3. Recombinant proteins and naturally occurring variant viruses were used to map the binding sites of the three MAbs. The three MAbs bound to overlapping but distinct epitopes on EDIII. Our empirical studies clearly demonstrate that the antibody binding and neutralization capacity of two MAbs was strongly influenced by naturally occurring mutations in DENV3. Our data demonstrate that the lateral ridge “type specific” epitope is not conserved between strains of DENV3. This variability should be considered when designing and evaluating DENV vaccines, especially those targeting EDIII.

Highlights

  • Dengue viruses (DENVs) are mosquito-borne flaviviruses and the agents of dengue fever and dengue hemorrhagic fever (DHF)

  • We compared a large number of E protein sequences and discovered that the region on E protein domain III targeted by neutralizing antibodies was highly variable between strains of dengue serotype 3

  • Using a panel of antibodies, we experimentally demonstrate that natural strain variation in dengue serotype 3 has a strong influence on antibody binding and neutralization

Read more

Summary

Introduction

Dengue viruses (DENVs) are mosquito-borne flaviviruses and the agents of dengue fever and dengue hemorrhagic fever (DHF). According to the World Health Organization, over 2.5 billion people are at risk of contracting dengue, 100 million people develop symptomatic infections and up to 50,000 die from DHF each year. The DENV complex consists of 4 serotypes (DENV1DENV4). DENVs have antibody epitopes that are unique to each serotype and epitopes that are cross reactive between serotypes. People who have recovered from primary DENV infections develop long term, protective immune responses against the homologous serotype only. Individuals exposed to a second infection with a different serotype face a greater risk of developing DHF indicating that pre-existing immunity can exacerbate disease under some conditions [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call