Abstract

Natural source zone depletion (NSZD) is an emerging technique for sustainable and cost-effective bioremediation of light non-aqueous phase liquid (LNAPL) in oil spill sites. Depending on regulatory objectives, NSZD has the potential to be used as either the primary or sole LNAPL management technique. To achieve this goal, NSZD rate (i.e., rate of bulk LNAPL mass depletion) should be quantified accurately and precisely. NSZD has certain characteristic features that have been used as surrogates to quantify the NSZD rates. This review highlights the most recent trends in technology development for NSZD data collection and rate estimation, with a focus on the operational and technical advantages and limitations of the associated techniques. So far, four principal techniques are developed, including concentration gradient (CG), dynamic closed chamber (DCC), CO2 trap and thermal monitoring. Discussions revolving around two techniques, “CO2 trap” and “thermal monitoring”, are expanded due to the particular attention to them in the current industry. The gaps of knowledge relevant to the NSZD monitoring techniques are identified and the issues which merit further research are outlined. It is hoped that this review can provide researchers and practitioners with sufficient information to opt the best practice for the research and application of NSZD for the management of LNAPL impacted sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.