Abstract

Natural siderite (FeCO3), simulated synthetic siderite and nZVI/FeCO3 composite were used as green and easily available iron-based catalysts in peroxydisulfate activation for remediating 2-chlorophenol as the target contaminant and this technique can effectively degrade organic pollutants in the soil. The key reaction parameters such as catalysts dosage, oxidant concentration and pH, were investigated to evaluate the catalytic performance of different materials in catalytic systems. The buffering property of natural soil conduced satisfactory degradation performance in a wide pH range (3-10). Both the main non-radical of 1O2 and free radicals of SO4·− and OH· were evidenced by quenching experiment and electron paramagnetic resonance. The reduction of nZVI on FFC surface not only has the advantage for electronic transfer to promote the circulation of Fe(III) to Fe(II), but also can directly dechlorinate. Furthermore, the intermediates were comprehensively analyzed by GC-MS and a potential removal mechanism of three oxidant system for 2-CP soil degradation was obtained. Briefly, this research provides a new perspective for organic contaminate soil treatment using natural siderite or simulated synthetic siderite as efficient and environmental catalytic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.