Abstract

Measurements of natural selection in hermaphrodite populations require the analysis of performance through both female and male sex functions. Here, we investigate selection on three floral traits: flower number, flower length, and corona width through both sex functions in natural populations of the tristylous daffodil Narcissus triandrus. Selection through female function was examined in six populations, and in two of these we also estimated male selection gradients using multilocus microsatellite genotyping of parents and offspring. We detected significant directional selection for flower number through female function, and significant stabilizing selection for corona width and flower length through male function. Variation in male reproductive success was strongly influenced by the distance between mates and was significantly higher than variation in female reproductive success in one population, a result consistent with Bateman's principle. However, variation through both sex functions was similar in the other population and there was a significant negative correlation between female and male fitness indicating sex-specific trade-offs in reproductive success. Selection on floral design in N. triandrus was stronger through male than female function probably because floral morphology plays an important role in promoting effective cross-pollen transfer in populations of this heterostylous species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call