Abstract

In the classical model of genetic drift in population genetics theory, use is made of a hypothetical "infinite-gametic pool". If, instead, the gametic pool is determined by the random number of offspring per individual, a new form of natural selection acting on the variance in offspring number occurs. A diffusion model of this selection process is derived and some of its properties are explored. It is shown that, independent of the sampling scheme used, the diffusion equation has the drift coefficient M(p) = p(1-p) (mul--mu2 + sigma2e2--sigma2el) and the diffusion coefficient v(p) equals p(1-p) [psigma2e2 + (l--p)sigma2el]. It is also pointed out that the Direct Product Branching process model of genetic drift introduces a non-biological interaction between individuals and is thus inappropriate for modeling natural selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.