Abstract

Male genitalia are more variable between species (and populations) than other organs, and are more morphologically complex in polygamous compared to monogamous species. Therefore, sexual selection has been put forward as the major explanation of genital variation and complexity, in particular cryptic female choice for male copulatory courtship. As cryptic female choice is based on differences between males it is somewhat paradoxical that there is such low within-species variation in male genitalia that they are a prime morphological identification character for animal species. Processes other than sexual selection may also lead to genitalia variation but they have recently become neglected. Here I focus on pleiotropy and natural selection and provide examples how they link genitalia morphology with genital environments. Pleiotropy appears to be important because most studies that specifically tested for pleiotropic effects on genital morphology found them. Natural selection likely favours certain genital morphology over others in various environments, as well as by reducing re-infection with sexually transmitted diseases or reducing the likelihood of fertilisation with aged sperm. Both pleiotropy and natural selection differ locally and between species so may contribute to local variation in genitalia and sometimes variation between monogamous and polygamous species. Furthermore, the multitude of genital environments will lead to a multitude of genital functions via natural selection and pleiotropy, and may also contribute to explaining the complexity of genitalia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call