Abstract

Early stages of visual processing may exploit the characteristic structure of natural visual stimuli. This structure may differ from the intrinsic structure of natural scenes, because sampling of the environment is an active process. For example, humans move their eyes several times a second when looking at a scene. The portions of a scene that fall on the fovea are sampled at high spatial resolution, and receive a disproportionate fraction of cortical processing. We recorded the eye positions of human subjects while they viewed images of natural scenes. We report that active selection affected the statistics of the stimuli encountered by the fovea, and also by the parafovea up to eccentricities of 4°. We found two related effects. First, subjects looked at image regions that had high spatial contrast. Second, in these regions, the intensities of nearby image points (pixels) were less correlated with each other than in images selected at random. These effects could serve to increase the information available to the visual system for further processing. We show that both of these effects can be simply obtained by constructing an artificial ensemble comprised of the highest-contrast regions of images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.