Abstract

Ultrasonically aided extrusion of natural rubber (NR), styrene butadiene rubber (SBR), and NR/SBR blends with ratio of 70/30, 50/50, and 30/70 were carried out at various ultrasonic amplitudes up to 10 μm. A die pressure of NR and NR/SBR blends continuously decreased with increase of ultrasonic amplitude, while that of SBR showed a slight increase with increase in amplitude from 5.0 to 7.5 μm due to a dominant effect of SBR gel formation. Complex dynamic viscosity, minimum and maximum torque of curing curves of NR, SBR, and NR/SBR blends, and cross-link density and gel fraction of their vulcanizates were decreased by the ultrasonic treatment at an amplitude of 10 μm, due to the molecular chain scission. The latter also led to a decrease in the hardness, modulus at a strain of 100%, and abrasion resistance of NR and NR/SBR blends. However, the modulus and abrasion resistance of SBR showed an improvement at amplitude of 7.5 μm, dueto a dominant effect of gel formation. Both the tensile strength and elongation at break of ultrasonically treated NR/SBR blends showed a maximum at amplitude of 5.0 μm, with the modulus at a strain of 100% not being affected. Morphological studies using the phase-contrast optical microscope and atomic force microscopy showed a reduction in the size of rubber phases and a better homogeneity of NR/SBR blend by the ultrasonic treatment at amplitude of 5.0 μm. Accordingly, the increase in both the tensile strength and elongation at break of ultrasonically treated NR/SBR blends at an amplitude of 5.0 μm is mainly ascribed to the lower size of rubber phases and improved uniformity of blend caused by the ultrasonic treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.