Abstract

The present paper is aimed to investigate the behavior of Natural Rubber Bearing incorporated with steel ring damper (NRB-SRD). These types of dampers are integrated of several steel rings which are considered with two configurations namely, continual steel ring damper and separate steel ring damper and are inserted between top and bottom plates. The performance characteristics of the system such as effective horizontal stiffness, energy dissipation, equivalent viscous damping and residual deformation are calculated and then compared with the results of high damping rubber bearings and also shape memory alloy (SMA)-lead core rubber bearing (SMA-LRB). The results show that the energy dissipation in steel rings are mainly based on plastic deformation due to flexural behavior of the rings. NRB-SRD shows better performance in energy dissipation comparing to SMA-LRB and HDRB. These additional dampers show higher stability and energy dissipation in low shear strains due to developing of link between structure and substructure having desirable initial stiffness under weak earthquakes and wind loads and also in higher shear strains due to creation of higher energy dissipation, stability and secondary stiffening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call