Abstract
The direction of left-right visceral asymmetry is conserved in vertebrates. Deviations of the standard asymmetric pattern are rare, and the underlying mechanisms are not understood. Here, we use the teleost Astyanax mexicanus, consisting of surface fish with normal left-oriented heart asymmetry and cavefish with high levels of reversed right-oriented heart asymmetry, to explore natural changes in asymmetry determination. We show that Sonic Hedgehog (Shh) signaling is increased at the posterior midline, Kupffer's vesicle (the teleost left-right organizer) is enlarged and contains longer cilia, and the number of dorsal forerunner cells is increased in cavefish. Furthermore, Shh increase in surface fish embryos induces asymmetric changes resembling the cavefish phenotype. Asymmetric expression of the Nodal antagonist Dand5 is equalized or reversed in cavefish, and Shh increase in surface fish mimics changes in cavefish dand5 asymmetry. Shh decrease reduces the level of right-oriented heart asymmetry in cavefish. Thus, naturally occurring modifications in cavefish heart asymmetry are controlled by the effects of Shh signaling on left-right organizer function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.