Abstract

Sharp stopping of time-harmonic wave transmission in elastic structures with defects is considered as a manifestation of the well-known trapped mode effect. It is associated with natural resonance poles lying close to the real axis in the complex frequency plane. Nonresonant wave blocking may also occur due to antiphase combination of the incident and scattered waves. The present paper is aimed to give an insight into such phenomena using an analytically based computer model which strictly takes into account all wave interactions in a cracked structure. Numerical examples are restricted to the case of a line horizontal crack in a half-plane or in a layer (2D in-plane motion), that is, nevertheless, quite enough to demonstrate two kinds of the Rayleigh wave stopping mechanisms (resonant and nonresonant) as well as a possibility of pure real natural resonance frequencies and of a full blocking effect with energy localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.