Abstract

The natural resistance of F1 hybrid mice against parental bone marrow grafts is thought to be mediated by natural killer (NK)-like effector cells. However, unlike the NK cell activity against a wide range of tumors and normal cells, hybrid resistance is characterized by the immunogenetic specificity controlled by a set of unique noncodominant genes denoted as Hh. Two alternative hypotheses can account for the specificity. Thus, the specificity may reflect either the Hh restriction of effectors or the Hh gene control of mechanisms regulating non-Hh-restricted effector activity. In this study, therefore, we tested the recognition specificity of putative effectors mediating hybrid resistance in lethally irradiated H-2b/d and H-2b/k F1 hybrid mice to the engraftment of parental H-2b bone marrow. As a direct means of defining the effector specificity, rejection of parental bone marrow grafts was subjected to competitive inhibition in situ by irradiated tumor cells. Of the 16 independent lines of lymphoma and other hemopoietic tumor cells tested, the ability to inhibit hybrid resistance was the exclusive property of all tumors derived from mice homozygous for the H-2Db region, regardless of whether the tumor cells were susceptible or resistant to NK cell-mediated cytotoxicity in vitro. Four cell lines heterozygous for the H-2Db were noninhibitory, including one that is susceptible to natural killing. Pretreatment of the F1 hosts with an interferon inducer augmented the resistance with no alteration in the recognition specificity of effector cells. Therefore, natural resistance to parental H-2b bone marrow grafts was mediated by effectors restricted by the H-2Db/Hh-1b gene(s), and not by the nonrestricted NK cells detectable in conventional in vitro assays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.