Abstract

The Arctic charr Salvelinus alpinus species complex has been shown to be exceptionally vulnerable to rapid abiotic and biotic changes. Salvelinus alpinus, however, inhabit environmental extremes ranging from lakes and rivers in the High Arctic to deep multi-fish species lakes far outside the polar region. Long-term responses to post-glacial environmental variations and successively increased interspecific interactions reveal an essential degree of natural ecological resilience and phenotypic flexibility. Case studies in Scandinavia and Newfoundland illustrate the alternate trophic roles of S. alpinus, and its flexible niche use and life-history changes in order to regain or maintain body size in gradients of lakes with increasing fish species diversity. While allopatric in northern low-productive upland lakes, landlocked populations are commonly structured by cannibalism. In sympatry with other fish species, S. alpinus mostly serve as prey, with their decreasing growth and body size reflecting the successive diet shift from littoral macro-benthos to zooplankton and profundal microbenthos as interspecific competition for food and habitat intensifies. Interactions with natural and introduced superior zooplankton feeders and ultimate predators finally become detrimental. Consequently, the niche of S. alpinus is increasingly compressed in lakes along latitudinal and altitudinal gradients, although certain natural key conditions offer S. alpinus temporary asylum in the inescapable process towards local and regional extinction. The water temperature drop during winter allows S. alpinus to temporarily resume the richer littoral dietary and spatial niche use in low diversity lakes. In southern lowland and coastal lakes with more complex fish communities, access to key prey species such as profundal macro-crustaceans and smelt Osmerus spp. allow S. alpinus to regain its original niche space and characteristics as a large piscivore. In conclusion, S. alpinus along its evolutionary landscape demonstrates associated alterations of life-history characteristics, such as body size and longevity, and thus reproductive traits demonstrating similarities between northern cannibals and southern piscivores. Although including a high degree of natural resilience, obviously differing among S.alpinus populations along its range, differences seen in extreme marginal populations may have been adaptive and the product of an evolutionary response with optimized growth resulting from natural selection due to ultimate intra or inter-specific competition and predation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call