Abstract

It is generally recognized that the evolution of the early Earth was affected by an external energy source: radiation from the early Sun. The hypothesis about the important role of natural radioactivity, as a source of internal energy in the evolution of the early Earth, is considered and substantiated in this work. The decay of the long-lived isotopes 232Th, 238U, 235U, and 40K in the Global Ocean initiated the oxygenation of the hydro- and atmosphere, and the abiogenesis. The content of isotopes in the ocean and the kinetics of their decay, the values of the absorbed dose and dose rate, and the efficiency of sea water radiolysis, as a function of time, were calculated. The ocean served as both a "reservoir" that collected components of the early atmosphere and products of their transformations, and a "converter" in which further chemical reactions of these compounds took place. Radical mechanisms were proposed for the formation of simple amino acids, sugars, and nitrogen bases, i.e., the key structures of all living things, and also for the formation of oxygen. The calculation results confirm the possible important role of natural radioactivity in the evolution of terrestrial matter, and the emergence of life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call