Abstract

Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin’s lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.

Highlights

  • Cyanobacteria belong to an ancient group of photosynthetic prokaryotes that present a very wide range of cellular strategies, physiological capacities, and adaptations that support their colonization of very diverse microenvironments worldwide

  • To close this review on the beneficial activities demonstrated for cyanobacterial metabolites, we highlight a few other compounds that are of potential interest for various fields of application because of their specific features

  • All available information concerning the beneficial activities of natural products of cyanobacteria was gathered

Read more

Summary

Introduction

Cyanobacteria belong to an ancient group of photosynthetic prokaryotes that present a very wide range of cellular strategies, physiological capacities, and adaptations that support their colonization of very diverse microenvironments worldwide. The present review globally and systematically describes current knowledge on the biological activities described for cyanobacterial natural products, and, thanks to the construction of a specific and freely available molecular database, regroups all information described so far concerning the chemical structures, the producing organisms, and the various bioactivities of all the different cyanobacterial metabolite families. This original material allows us to depict, from data based on exhaustive literature, which kinds of bioactive metabolite are potentially produced by the different cyanobacterial taxa. A specific focus on 47 cyanobacterial compounds presenting beneficial bioactivities is detailed and discussed regarding their potential in pharmaceutical, cosmetical, biotechnical, and agricultural applications, which opens new perspectives on the discovery of novel and potent bioactive cyanobacterial molecules

Methods for Dataset Construction
Taxonomy of the Producing Strains
Proportion
Chemical Diversity and Bioactivity of Natural Products from Cyanobacteria
The activities of
Beneficial Activities of Natural Products Produced by Cyanobacteria
Antimicrobial Activity
Antibacterial Activity
Antialgal Activity
Antifungal Activity
Antiviral Activity
Potential Anticancer Activity
Cytotoxic Activity
Protease Inhibitory Activity
Histone Deacetylase Inhibitors
Anti-Inflammatory Activity
Antioxidant Activity
Other Metabolites with Potential Beneficial Properties
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call