Abstract

Using an HIV-1 Reverse Transcriptase (RT)-associated RNase H inhibition assay as lead, bioguided fractionation of the dichloromethane extract of the Ocimum sanctum leaves led to the isolation of five triterpenes (1–5) along with three 3-methoxy-4-hydroxy phenyl derivatives (6–8). The structure of this isolates were determined by 1D and 2D NMR experiments as well as ESI-MS. Tetradecyl ferulate (8) showed an interesting RNase H IC50 value of 12.4 μM and due to the synthetic accessibility of this secondary metabolite, a structure-activity relationship study was carried out. A series of esters and amides of ferulic and caffeic acids were synthesized and, among all, the most active was N-oleylcaffeamide displaying a strong inhibitory activity towards both RT-associated functions, ribonuclease H and DNA polymerase. Molecular modeling studies together with Yonetani-Theorell analysis, demonstrated that N-oleylcaffeamide is able to bind both two allosteric site located one close to the NNRTI binding pocket and the other close to RNase H catalytic site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.