Abstract

The apoptotic mechanism is regulated by the BCL-2 family of proteins, such as BCL-2 or Bcl-xL, which block apoptosis while Bad, Bak, Bax, Bid, Bim or Hrk induce apoptosis. The overexpression of BCL-2 was found to be related to the progression of cancer and also providing resistance towards chemotherapeutic treatments. In the present study, we found that all polyphenols (apigenin, fisetin, galangin and luteolin) bind to the hydrophobic groove of BCL-2 and the interaction is stable throughout MD simulation run. Luteolin was found to bind with highest negative binding energy and thus, claimed highest potency towards BCL-2 inhibition followed by fisetin. The hydrophobic interactions were found to be critical for stable complex formation as revealed by the vdW energy and ligplot analysis. Finally, on the basis of data obtained during the study, it can be concluded that these polyphenols have the potential to be used as lead molecules for BCL-2 inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.