Abstract

Conductive hydrogels have shown great prospects as wearable flexible sensors. Nevertheless, it is still a challenge to construct hydrogel-based sensor with great mechanical strength and high strain sensitivity. Herein, an ion-conducting hydrogel was fabricated by introducing gelatin-dialdehyde β-cyclodextrin (Gel-DACD) into polyvinyl alcohol-borax (PVA-borax) hydrogel network. Natural Gel-DACD network acted as mechanical deformation force through non-covalent cross-linking to endow the polyvinyl alcohol-borax/gelatin-dialdehyde β-cyclodextrin hydrogel (PGBCDH) with excellent mechanical stress (1.35 MPa), stretchability (400%), toughness (1.84 MJ/m3) and great fatigue resistance (200% strain for 100 cycles). Surprisingly, PGBCDH displayed good conductivity of 0.31 S/m after adding DACD to hydrogel network. As sensor, it showed rapid response (168 ms), high strain sensitivity (gage factor (GF) = 8.57 in the strain range of 200%-250%) and reliable sensing stability (100% strain for 200 cycles). Importantly, PGBCDH-based sensor can accurately monitor complex body movements (knee, elbow, wrist and finger joints) and large-scale subtle movements (speech, swallow, breath and facial expressions). Thus, PGBCDH shows great potential for human monitoring with high precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call