Abstract

Microtubules (MT) are cylindrical polymers of the protein tubulin (TN) alpha, beta-heterodimer, and are known to be the main component of spindles in mitotic apparatus of eucaryotic cells. MT are also involved in many other basic and essential cell functions. There are a number of natural and synthetic compounds that interfere with MT function to cause the mitotic arrest of eucaryotic cells. Such antimitotic agents show a broad biological activity, and can be used for medicinal and agrochemical purposes. On the other hand, they are important also as the biochemical tools for understanding the dynamics of MT network. Most of such antimitotic agents, with a few exceptions, bind to beta-TN. Among them, colchicine (CLC), vinblastine and taxol have played major roles in practical uses as well as in biochemical studies of MT functions. They all bind to beta-TN but their binding sites are different. We have worked on a variety of antimitotic agents that bind to either of colchicine-site, vinblastine-site and taxol-site, in discovery, structures, biological actions and/or interactions with TN. In this paper, the results of our studies on CLC-site ligands were summarized; (1) synthetic analogs of combretastatin A-4 (CBS A-4), isolated as a cytotoxic compound produced by a species of South African tree Combretum caffrum, (2) curacin A (CU-A), a cytotoxic metabolite of a marine cyanobacteria Lyngbya majuscula, and its related compounds. Interactions of these compounds with TN were studied and structure-activity relationships of these two classes of compounds were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call