Abstract

For a quantum system of N identical, harmonically interacting particles in a one-dimensional harmonic trap we calculate for the bosonic and fermionic ground state the corresponding 1-particle reduced density operator $\rho_1$ analytically. In case of bosons $\rho_1$ is a Gibbs state for an effective harmonic oscillator. Hence the natural orbitals are Hermite functions and their occupation numbers obey a Boltzmann distribution. Intriguingly, for fermions with not too large couplings the natural orbitals coincide up to just a very small error with the bosonic ones. In case of strong coupling this still holds qualitatively. Moreover, the decay of the decreasingly ordered fermionic natural occupation numbers is given by the bosonic one, but modified by an algebraic prefactor. Significant differences to bosons occur only for the largest occupation numbers. After all the "discontinuity" at the "Fermi level" decreases with increasing coupling strength but remains well pronounced even for strong interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.