Abstract

Nature has always been seemingly limitless in its ability to create new chemical entities. It provides vastly diverse natural compounds through a biomanufacturing process that involves myriads of biosynthetic machineries. Here we report a case of unusual formations of hybrid natural products that are derived from two distinct polyketide biosynthetic pathways, the NFAT-133 and conglobatin pathways, in Streptomyces pactum ATCC 27456. Their chemical structures were determined by NMR spectroscopy, mass spectrometry, and chemical synthesis. Genome sequence analysis and gene inactivation experiments uncovered the biosynthetic gene cluster of conglobatin in S. pactum. Biochemical studies of the recombinant thioesterase (TE) domain of the conglobatin polyketide synthase (PKS) as well as its S74A mutant revealed that the formation of these hybrid compounds requires an active TE domain. We propose that NFAT-133 can interfere with conglobatin biosynthesis by reacting with the TE-domain-bound intermediates in the conglobatin PKS assembly line to form hybrid NFAT-133/conglobatin products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.