Abstract
AbstractStoichiometric and non-stoichiometric (defect) pyrochlores crystallize during the magmatic and late magmatic-hydrothermal phases of carbonatite emplacement (T > 450–550 °C, P < 2 kb). Defect pyrochlores can also form at low temperatures in laterite horizons during weathering. After crystallization, pyrochlore is subject to alteration by hydrothermal fluids (T ∼ 550-200°C) and ground water. Alteration occurs primarily by ion exchange of low valence A-site cations together with O, F, and OH ions. The high valence cations Th and U are generally immobile; however, we have documented one example of hydrothermal alteration involving loss of U together with cation exchange at the B-site in samples from Mountain Pass, California. During laterite accumulation, the cation exchange rate of pyrochlore greatly exceeds the rate of matrix dissolution. The exceptional durability of pyrochlore in natural environments is related to the stability of the B-site framework cations. In carbonatites, defect pyrochlores may contain significant amounts of Si (up to 7.6 wt% SiO2) which is negatively correlated with Nb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.