Abstract

Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications.

Highlights

  • Various applications in pharmaceutical and biomedical technology are based on the dispersion of particulates, which include specialty coatings and sustained release and delivery systems [1,2,3]

  • When Antheraea pernyi silk fibroin (ApF) nanoparticles were loaded with small-molecule drugs, such as doxorubicin hydrochloride (DOX), ibuprofen, and ibuprofen-Na, the size and morphology of the drugs loaded on nanoparticles were similar to that of pure ApF nanoparticles

  • The present study provides a unique method to fabricate ApF nanoparticles and ApF nanoparticles were used as drug carriers to load differently-charged small-molecule drugs via simple absorption based on electrostatic interactions under mild conditions

Read more

Summary

Introduction

Various applications in pharmaceutical and biomedical technology are based on the dispersion of particulates, which include specialty coatings and sustained release and delivery systems [1,2,3]. The production of particles remains challenging because choosing appropriate materials and modes of processing requires avoiding surfactants, initiators, or organic solvents as far as practicable [9] Natural macromolecule materials such as collagen, gelatin, and albumin are often preferred [10,11], which can be processed under mild conditions. Silk protein is composed of diverse amino acids, many of which contain functional groups which can be used to bind to cell surface receptors of specific cell types. This binding is an advantage for the delivery of drugs and compares favorably with many other synthetic polymeric systems. Selection of natural silk particles as a platform is justified for controlled drug delivery

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.