Abstract

A physically based method to derive well-posed instances of the two-fluid momentum transport equations from first principles is presented. The basic tools used in this endeavor are the variational principles of field theory, namely, the Hamilton principle and the virtual power principle. The state of the two-fluid flow is represented by the superficial velocity and the drift flux, instead of the average velocities of each fluid. This generates the conservation equations of the two principal motion modes naturally: the global center-of-mass flow and the relative velocity between fluids. Well-posed equations can be obtained by modeling the storage and exchange of kinetic energy in fluctuations structures induced by the interaction between fluids, like wakes and vortexes. In this way, the equations can be regularized without losing in the process the kinetic instabilities responsible for flow-patterns formation and transition. A specific case of vertical air–water flow is analyzed showing the capability of the present model to predict the formation of the slug flow regime as a train of solitons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.