Abstract

Protein sequences have higher linguistic complexities than human languages. This indicates undeciphered multilayered, overprinted information/genetic codes. Some superimposed genetic information is revealed by detections of transcripts systematically (a) exchanging nucleotides (nine symmetric, e.g. A<->C, fourteen asymmetric, e.g. A->C->G->A, swinger RNAs) translated according to tri-, tetra- and pentacodons, and (b) deleting mono-, dinucleotides after each trinucleotide (delRNAs). Here analyses of two independent proteomic datasets considering natural proteolysis confirm independently translation of these non-canonical RNAs, also along tetra- and pentacodons, increasing coverage of putative, cryptically encoded proteins. Analyses assuming endoproteinase GluC and elastase digestions (cleavages after residues D, E, and A, L, I, V, respectively) detect additional peptides colocalizing with detected non-canonical RNAs. Analyses detect fewer peptides matching GluC-, elastase- than trypsin-digestions: artificial trypsin-digestion outweighs natural proteolysis. Results suggest occurrences of complete proteins entirely matching non-canonical, superimposed encoding(s). Protein-coding after bijective transformations could explain genetic code symmetries, such as along Rumer's transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.