Abstract

The energy-conversion storage systems serve as crucial roles for solving the intermittent of sustainable energy. But, the materials in the battery systems mainly come from complex chemical process, accompanying with the inevitable serious pollutions and high energy-consumption. Natural mineral resources display various merits, such as unique architecture, adsorption capability and rich active sites, which have captured numerous attentions with remarkable advancements. Recently, the minerals compounds, containing 1D structure (halloysites, attapulgites, sepiolite), 2D structure (montmorillonite, vermiculite, molybdenite) and 3D structure (diatomite, pyrites), have been applied in plenty of fields. Aiming at their energy-storage applications, the significant utilizations in electrodes, separators, electrolyte and metal-protection were detailedly reviewed in lithium-ions battery, lithium-sulfur battery, solid-state battery and so on. However, it should be acknowledged that, the simple minerals hardly meet the demand of energy-storage systems, due to their inferior conductivity and less active substances. Thus, series of modified manners are applied for the evolution of phase (from silicate mineral to Si), the incorporating with carbon/polymer and the tailoring of surface traits, which were in-depth discussed as following. The work was expected to summarize the traits about mineral compounds from different architectures, whilst offering significant guidelines for exploring mineral-based materials in energy-storage systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.