Abstract

In potatoes, mechanical damage and the formation of black spots in the tuber flesh cause substantial economic losses and degradation of quality. The aim of this study was to determine the susceptibility of new potato genotypes (178 elite breeding lines) to blackspot damage after 7 months' storage at 5 and 8 °C, and to examine whether this susceptibility correlated with natural losses. The lowest index of blackspot damage after harvest was found in genotypes from the mid-late group of earliness and low-susceptibility group, and after storage in genotypes from the early group of earliness and low-susceptibility group. After storage at 5 °C tubers were characterized by a lower susceptibility to bruising compared with tubers stored at 8 °C. The storage temperature significantly affected the natural losses in advanced potato breeding materials after storage in the case of all earliness and susceptibility groups. The highest susceptibility to blackspot damage and natural losses occurred in potatoes stored at 8 °C (r = 0.85-0.91). Such a relationship was not observed in potatoes stored at 5 °C. For potato tubers susceptible to the formation of after-wounding blackspot, the natural losses arising as a result of storage at 8 °C can be used as a subjective method to evaluate the susceptibility of potatoes to the formation of black spots in the flesh. However, this observation needs further studies and stronger proof of this theory. © 2017 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.