Abstract

Naturally occurring layered mineral livingstonite is identified as a new type of van der Waals (vdW) heterostructure based 2D material, consisting of two commensurately modulated alternating layers of HgSb2S4 and Sb2S4. The heterostructures of livingstonite crystal are prepared as thin flakes via mechanical exfoliation method. The prepared livingstonite crystals are further investigated in the context of vibrational, linear, and nonlinear optical properties, including anisotropic Raman scattering, wavelength-dependent linear dichroism (LD) transition effect, birefringence, and anisotropic third-harmonic generation (THG). Owing to the monoclinic crystal structure, livingstonite crystals exhibit strong anisotropic vibrational and optical responses. In contrast to conventional vdW heterostructures, the anomalous LD transition effect and the evolution of butterfly-shaped THG emission pattern in livingstonite crystals are demonstrated. Furthermore, the third-order nonlinear susceptibility is estimated for livingstonite crystal using the thickness-dependent THG emission response. Overall, the discussed outcomes establish livingstonite as a new type of naturally grown vdW heterostructure based 2D material and offer insights in tailoring linear and nonlinear light-matter interactions in such vdW heterostructures, which may find further relevance in polarized optical applications and on-chip integrated photonic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.