Abstract

BackgroundAccurate and timely detection of medical adverse events (AEs) from free-text medical narratives can be challenging. Natural language processing (NLP) with deep learning has already shown great potential for analyzing free-text data, but its application for medical AE detection has been limited. MethodIn this study, we developed deep learning based NLP (DL-NLP) models for efficient and accurate hip dislocation AE detection following primary total hip replacement from standard (radiology notes) and non-standard (follow-up telephone notes) free-text medical narratives. We benchmarked these proposed models with traditional machine learning based NLP (ML-NLP) models, and also assessed the accuracy of International Classification of Diseases (ICD) and Current Procedural Terminology (CPT) codes in capturing these hip dislocation AEs in a multi-center orthopaedic registry. ResultsAll DL-NLP models outperformed all of the ML-NLP models, with a convolutional neural network (CNN) model achieving the best overall performance (Kappa = 0.97 for radiology notes, and Kappa = 1.00 for follow-up telephone notes). On the other hand, the ICD/CPT codes of the patients who sustained a hip dislocation AE were only 75.24% accurate. ConclusionsWe demonstrated that a DL-NLP model can be used in largescale orthopaedic registries for accurate and efficient detection of hip dislocation AEs. The NLP model in this study was developed with data from the most frequently used electronic medical record (EMR) system in the U.S., Epic. This NLP model could potentially be implemented in other Epic-based EMR systems to improve AE detection, and consequently, quality of care and patient outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call