Abstract
To evaluate the performance of natural language processing (NLP) models to predict isocitrate dehydrogenase (IDH) mutation status in diffuse glioma using routine MR radiology reports. This retrospective, multi-center study included consecutive patients with diffuse glioma with known IDH mutation status from May 2009 to November 2021 whose initial MR radiology report was available prior to pathologic diagnosis. Five NLP models (long short-term memory [LSTM], bidirectional LSTM, bidirectional encoder representations from transformers [BERT], BERT graph convolutional network [GCN], BioBERT) were trained, and area under the receiver operating characteristic curve (AUC) was assessed to validate prediction of IDH mutation status in the internal and external validation sets. The performance of the best performing NLP model was compared with that of the human readers. A total of 1427 patients (mean age ± standard deviation, 54 ± 15; 779 men, 54.6%) with 720 patients in the training set, 180 patients in the internal validation set, and 527 patients in the external validation set were included. In the external validation set, BERT GCN showed the highest performance (AUC 0.85, 95% CI 0.81-0.89) in predicting IDH mutation status, which was higher than LSTM (AUC 0.77, 95% CI 0.72-0.81; p = .003) and BioBERT (AUC 0.81, 95% CI 0.76-0.85; p = .03). This was higher than that of a neuroradiologist (AUC 0.80, 95% CI 0.76-0.84; p = .005) and a neurosurgeon (AUC 0.79, 95% CI 0.76-0.84; p = .04). BERT GCN was externally validated to predict IDH mutation status in patients with diffuse glioma using routine MR radiology reports with superior or at least comparable performance to human reader. Natural language processing may be used to extract relevant information from routine radiology reports to predict cancer genotype and provide prognostic information that may aid in guiding treatment strategy and enabling personalized medicine. • A transformer-based natural language processing (NLP) model predicted isocitrate dehydrogenase mutation status in diffuse glioma with an AUC of 0.85 in the external validation set. • The best NLP models were superior or at least comparable to human readers in both internal and external validation sets. • Transformer-based models showed higher performance than conventional NLP model such as long short-term memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.