Abstract

Natural language processing (NLP) has the potential to accelerate translation of cancer treatments from the laboratory to the clinic and will be a powerful tool in the era of personalized medicine. This technology can harvest important clinical variables trapped in the free-text narratives within electronic medical records. Natural language processing can be used as a tool for oncological evidence-based research and quality improvement. Oncologists interested in applying NLP for clinical research can play pivotal roles in building NLP systems and, in doing so, contribute to both oncological and clinical NLP research. Herein, we provide an introduction to NLP and its potential applications in oncology, a description of specific tools available, and a review on the state of the current technology with respect to cancer case identification, staging, and outcomes quantification. More automated means of leveraging unstructured data from daily clinical practice is crucial as therapeutic options and access to individual-level health information increase. Research-minded oncologists may push the avenues of evidence-based research by taking advantage of the new technologies available with clinical NLP. As continued progress is made with applying NLP toward oncological research, incremental gains will lead to large impacts, building a cost-effective infrastructure for advancing cancer care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.