Abstract

Introduction: This study investigates whether it is possible to predict a final diagnosis based on a written nephropathological description—as a surrogate for image analysis—using various NLP methods. Methods: For this work, 1107 unlabelled nephropathological reports were included. (i) First, after separating each report into its microscopic description and diagnosis section, the diagnosis sections were clustered unsupervised to less than 20 diagnostic groups using different clustering techniques. (ii) Second, different text classification methods were used to predict the diagnostic group based on the microscopic description section. Results: The best clustering results (i) could be achieved with HDBSCAN, using BoW-based feature extraction methods. Based on keywords, these clusters can be mapped to certain diagnostic groups. A transformer encoder-based approach as well as an SVM worked best regarding diagnosis prediction based on the histomorphological description (ii). Certain diagnosis groups reached F1-scores of up to 0.892 while others achieved weak classification metrics. Conclusion: While textual morphological description alone enables retrieving the correct diagnosis for some entities, it does not work sufficiently for other entities. This is in accordance with a previous image analysis study on glomerular change patterns, where some diagnoses are associated with one pattern, but for others, there exists a complex pattern combination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.