Abstract

BackgroundFree text in electronic health records (EHR) may contain additional phenotypic information beyond structured (coded) information. For major health events – heart attack and death – there is a lack of studies evaluating the extent to which free text in the primary care record might add information. Our objectives were to describe the contribution of free text in primary care to the recording of information about myocardial infarction (MI), including subtype, left ventricular function, laboratory results and symptoms; and recording of cause of death. We used the CALIBER EHR research platform which contains primary care data from the Clinical Practice Research Datalink (CPRD) linked to hospital admission data, the MINAP registry of acute coronary syndromes and the death registry. In CALIBER we randomly selected 2000 patients with MI and 1800 deaths. We implemented a rule-based natural language engine, the Freetext Matching Algorithm, on site at CPRD to analyse free text in the primary care record without raw data being released to researchers. We analysed text recorded within 90 days before or 90 days after the MI, and on or after the date of death.ResultsWe extracted 10,927 diagnoses, 3658 test results, 3313 statements of negation, and 850 suspected diagnoses from the myocardial infarction patients. Inclusion of free text increased the recorded proportion of patients with chest pain in the week prior to MI from 19 to 27%, and differentiated between MI subtypes in a quarter more patients than structured data alone. Cause of death was incompletely recorded in primary care; in 36% the cause was in coded data and in 21% it was in free text. Only 47% of patients had exactly the same cause of death in primary care and the death registry, but this did not differ between coded and free text causes of death.ConclusionsAmong patients who suffer MI or die, unstructured free text in primary care records contains much information that is potentially useful for research such as symptoms, investigation results and specific diagnoses. Access to large scale unstructured data in electronic health records (millions of patients) might yield important insights.

Highlights

  • Free text in electronic health records (EHR) may contain additional phenotypic information beyond structured information

  • We previously carried out a study of the completeness and diagnostic validity of myocardial infarction (MI) records in CALIBER [12], which included 21,482 patients with a first MI recorded in either Myocardial Ischaemia National Audit Project (MINAP), Hospital Episode Statistics (HES), Office for National Statistics (ONS) or Clinical Practice Research Datalink (CPRD) primary care in 2003–2009

  • Classifying the type of myocardial infarction For patients who had a MINAP record in CALIBER, i.e. those who arrived at hospital alive and whose data were submitted to the national acute coronary syndrome registry, we investigated the accuracy of structured and unstructured information in the primary care record

Read more

Summary

Introduction

Free text in electronic health records (EHR) may contain additional phenotypic information beyond structured (coded) information. There have been few studies using NLP on primary care data, which is crucial for understanding early manifestations of disease (before a patient is admitted to hospital or attends a secondary care clinic). This may enable the development of early diagnosis and treatment strategies. If some consultations for chest pain are not recorded using appropriate codes, as suggested in US studies [5], the prevalence of chest pain prior to MI may be underestimated Accurate information on such symptoms is essential to inform public health endeavours aimed at preventing MI, but has not previously been studied on a large scale in the UK

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call