Abstract
During the 20th century, biology—especially molecular biology—has become a pilot science, so that many disciplines have formulated their theories under models taken from biology. Computer science has become almost a bio-inspired field thanks to the great development of natural computing and DNA computing. From linguistics, interactions with biology have not been frequent during the 20th century. Nevertheless, because of the “linguistic” consideration of the genetic code, molecular biology has taken several models from formal language theory in order to explain the structure and working of DNA. Such attempts have been focused in the design of grammar-based approaches to define a combinatorics in protein and DNA sequences (Searls, 1993). Also linguistics of natural language has made some contributions in this field by means of Collado (1989), who applied generativist approaches to the analysis of the genetic code. On the other hand, and only from theoretical interest a strictly, several attempts of establishing structural parallelisms between DNA sequences and verbal language have been performed (Jakobson, 1973, Marcus, 1998, Ji, 2002). However, there is a lack of theory on the attempt of explaining the structure of human language from the results of the semiosis of the genetic code. And this is probably the only arrow that remains incomplete in order to close the path between computer science, molecular biology, biosemiotics and linguistics. Natural Language Processing (NLP) –a subfield of Artificial Intelligence that concerns the automated generation and understanding of natural languages— can take great advantage of the structural and “semantic” similarities between those codes. Specifically, taking the systemic code units and methods of combination of the genetic code, the methods of such entity can be translated to the study of natural language. Therefore, NLP could become another “bio-inspired” science, by means of theoretical computer science, that provides the theoretical tools and formalizations which are necessary for approaching such exchange of methodology. In this way, we obtain a theoretical framework where biology, NLP and computer science exchange methods and interact, thanks to the semiotic parallelism between the genetic code and natural language.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.