Abstract

Events related to HCMV infection drive accumulation of functionally enhanced CD57posNKG2Cpos adapted NK cells. We investigated NK cell adaptation to HCMV along a proposed continuum progressing from acute activation through maturation and memory formation towards functional exhaustion. Acute exposure to conditioned medium collected 24 h after HCMV infection (HCMVsn) increased NK cell cytotoxicity for all HCMV-seronegative and seropositive donors tested, with mean 38 and 29% boosts in natural and antibody-dependent cell-mediated cytotoxicity (ADCC), respectively. Increases in NK cell cytotoxicity were completely abrogated by blocking type I interferon (IFN) receptors and equivalent responses occurred with exposure to IFN-α2 alone at the same concentration present in HCMVsn. To study longer term effects of HCMV infection, we focused on three groups of human immunodeficiency virus (HIV)-infected subjects distinguished as HCMV-seronegative or HCMV-seropositive with either high (>20%) or low (<6%) fractions of their NK cells expressing NKG2C. The NK cells of all three HIV-infected groups responded to HCMVsn and IFN-α2 in a manner similar to the NK cells of either HCMV-seronegative or seropositive controls. Neither HCMV status, nor the extent of phenotypic evidence of adaptation to HCMV infection significantly affected mean levels of ADCC or CD16-mediated NK cell degranulation and IFN-γ production compared between the HIV-infected groups. Levels of IFN-γ production correlated significantly with the fraction of NK cells lacking FcεRIγ (FcRγ), but not with the fraction of NK cells expressing NKG2C. There was negligible expression of exhaustion markers Lag-3 and PD-1 on NK cells in any of the groups and no significant difference between groups in the fraction of NK cells expressing Tim-3. The fraction of NK cells expressing Tim-3 was unaffected by CD16 stimulation. Relative to the total NK cell population, responses of Tim-3-expressing cells to CD16 stimulation were variably compromised in HCMV seronegative and seropositive groups. In general, NK cell function in response to signaling through CD16 was well preserved in HIV infection and although HCMV had a clear effect on NK cell FcRγ and NKG2C expression, there was little evidence that the level of adaptation to HCMV infection affected CD16-dependent NK cell signaling in HIV infection.

Highlights

  • Natural killer (NK) cells provide defense against malignancy and infection by recognizing certain alterations in affected cells and responding

  • To examine how NK cells respond to factors released early in HCMV infection, we collected supernatant from uninfected (CONsn) and AD169-infected (HCMVsn) MRC-5 fibroblasts over 24 h intervals up to 120 h post infection

  • Increased NK cell cytotoxicity following exposure to HCMVsn collected at 24 h occurred for all 12 donors tested, with a mean 38% boost in natural cytotoxicity (Figure 1B) and 29% increase in NK cell antibody-dependent cellular cytotoxicity (ADCC) (Figure 1C)

Read more

Summary

Introduction

Natural killer (NK) cells provide defense against malignancy and infection by recognizing certain alterations in affected cells and responding . While NK cells recognize altered host cells and mediate effector functions without prior exposure to the altered cells, NK cell functional competence depends upon previous selective engagement of an inhibitory NK cell receptor with a class I human histocompatibility-linked antigen (HLA) [1] This developmental education process enables NK cells to mediate cytotoxicity and/or produce cytokines when encountering altered host cells, while ensuring appropriate levels of self-tolerance [2,3,4,5]. Selective NK cell education at this developmental stage raises the possibility of further maturation within select subsets under conditions associated with infections or malignancy Such NK cell maturation clearly takes place in murine cytomegalovirus (MCMV) infection. Cytokine production and specific receptor ligand interactions between Ly49H and MCMV m157 drive a subset of NK cells expressing the Ly49H activating receptor to selectively expand, persist at elevated levels and provide protection against subsequent MCMV infection [6,7,8,9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call