Abstract

ABSTRACTNatural killer (NK) cells can kill infected or transformed cells via a lytic immune synapse. Diseased cells may exhibit altered mechanical properties but how this impacts NK cell responsiveness is unknown. We report that human NK cells were stimulated more effectively to secrete granzymes A and B, FasL (also known as FasLG), granulysin and IFNγ, by stiff (142 kPa) compared to soft (1 kPa) planar substrates. To create surrogate spherical targets of defined stiffness, sodium alginate was used to synthesise soft (9 kPa), medium (34 kPa) or stiff (254 kPa) cell-sized beads, coated with antibodies against activating receptor NKp30 (also known as NCR3) and the integrin LFA-1 (also known as ITGAL). Against stiff beads, NK cells showed increased degranulation. Polarisation of the microtubule-organising centre and lytic granules were impaired against soft targets, which instead resulted in the formation of unstable kinapses. Thus, by varying target stiffness to characterise the mechanosensitivity of immune synapses, we identify soft targets as a blind spot in NK cell recognition.This article has an associated First Person interview with the co-first authors of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.