Abstract

In haplo-identical hematopoietic transplantation, donor vs. recipient natural killer (NK) cell alloreactivity derives from a mismatch between donor NK clones bearing inhibitory killer cell Ig-like receptors (KIR) for self-HLA class I molecules and their HLA class I ligands (KIR ligands) on recipient cells. When faced with mismatched allogeneic targets, these NK clones sense the missing expression of self-HLA class I alleles and mediate alloreactions. KIR ligand mismatches in the GvH direction trigger donor vs. recipient NK cell alloreactions, which improve engraftment, do not cause GvHD and control relapse in AML patients . The mechanism whereby alloreactive NK cells exert their benefits in transplantation has been elucidated in mouse models. The infusion of alloreactive NK cells ablates (i) leukemic cells, (ii) recipient T cells that reject the graft and (iii) recipient DC that trigger GvHD, thus protecting from GvHD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.