Abstract

Large eddy simulations of turbulent flow and transport in the atmospheric boundary layer were conducted over heterogeneous sources of heat and water vapor to identify the blending properties of the turbulent mixing in an unstably stratified boundary layer. The numerical simulations show that the concept of blending in the ABL is in fact a useful one, even under convective conditions, for a range of surface conditions. Since the transport eddies that are responsible for the blending have sizes that are constrained by the boundary layer depth, and since the vertical motion is so important under the unstable density stratification studied here, we see that when the length scales of the source variability on the land surface become significantly greater than the ABL depth the blending is lost. In this case the source fields remain relatively uncoupled by the important eddy motion. However, for smaller surface length scales, the dynamic eddy motion couples the surface patches. Hence, there is good reason that the land surface exchange phenomenon would not be scale invariant over the entire range of scales. Because of the active role of temperature the effects of inhomogeneous surface sources of sensible heat persist higher into the ABL than do the effects of surface sources from more passive scalars, such as water vapor. Moreover, the mean fields of potential temperature and specific humidity blend at much lower heights than do the vertical turbulent flux fields of these two scalars. We propose a useful measure of blending efficiency for simulation studies and show how this bridges from the dynamics responsible for the blending to the horizontal homogeneity of scalar flux fields at measurement heights in the ABL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.